Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Year range
1.
J Genet ; 2020 Sep; 99: 1-5
Article | IMSEAR | ID: sea-215487

ABSTRACT

Cotton has received attention of geneticists since more than a century. Gossypium hirsutum, the predominantly cultivated cotton species worldwide, has a narrow genetic base. It is important to broaden its genetic base through introgression of novel alleles from related species. Here, we report the development and characterization of a backcross population derived from the hybridization of a ‘synthetic’ (derived by crossing and chromosomal doubling of nonprogenitor Gossypium species) and natural tetraploid upland cotton. ‘Synthetic’ was observed to be male-sterile and thus, was used as the female parent. A total of 7434 flowers were pollinated to obtain 1868 BC1F1 seeds by direct and reciprocal crosses. Characterization of the experimental plant material was conducted in the field for several morphological traits such as pubescence on the stem, leaf, petiole and bract, presence/absence of petal spot, petal margin colouration and stamen filament colouration. Genetic analysis revealed that petal margin colouration phenotype was governed by a single dominant gene, whereas the petal spot and filament colouration phenotypes manifested segregation distortion. None of the BC1F1 plants was devoid of trichomes thus demonstrating that presence of trichomes is dominant over their absence. Modern upland cotton cultivars are usually devoid of petal spot, petal margin colouration and stamen filament colouration. These floral anthocyanin pigmentation characteristics, if fixed in the cotton germplasm, may serve as diagnostic features for the identification of cultivars during DUS testing as well as in the maintenance breeding programmes

SELECTION OF CITATIONS
SEARCH DETAIL